

Neutron Imaging Camera

Georgia A. de Nolfo NASA/GSFC Georgia.a.denolfo@nasa.gov 301-286-1512

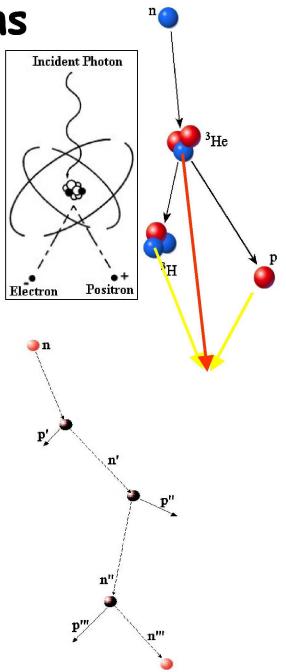
NIC Development Team

NASA/GSFC Stan Hunter, PI Seunghee Son Georgia de Nolfo Jason Link Mike Dion

NSWC/CD Noel Guardala Mary Jo Bieberick NSWC/CD ONR Jack Price Pat Winters Joe Curran

2

Neutron Imaging Camera


- Basis of NIC technology is 3-D tracking of charged particles in a gaseous medium.
 - Comprised of a Time Projection Chamber (TPC) with 2-D Micro-well readout (MWD).
- Unique technology; distinct from traditional methods for neutron imaging.
- Versatile Applications
 - Passive and active standoff interrogation
 - Space/Solar physics
 - Neutron, gamma, & charged particle detection

Methods of Neutron Imaging

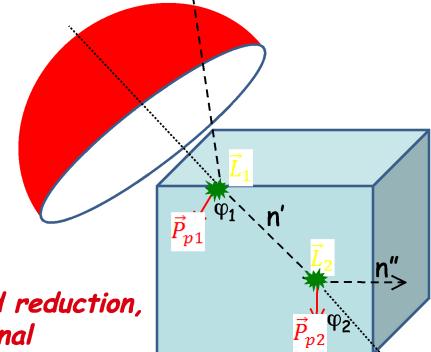
- As with gamma-ray imaging, neutron imaging relies on the detection of secondary products of neutron interactions in matter.
- Take advantage of interactions with large cross sections:
 - Inelastic: ³He(n,p)³H
 - Elastic: (n,p)
- Use measured quantities from secondary tracks (arrival time, (x,y,z),p,E) to reconstruct initial direction & energy of neutron.

Neutron Interactions

- 3He(n,p)3H
 - Track p & 3H
 - Vertex identification allows for reconstruction of initial neutron momentum vector
- Elastic (n,p) scatter
 - Track single & multiple scatter protons
 - Use $\vec{p_p}$ to reconstruct initial neutron momentum vector
- Key to NIC technology is measuring secondary byproduct momentum vectors.

NIC Advantage for (n,p) tracking

- Measure proton energy, Ep₁ & Ep₂
 - + Interaction locations, L₁ & L₂
 - 1 scatter → neutron detection
 - 2 scatters $\rightarrow 2\pi$ sr location, En > Ep1+Ep2
 - + Momenta of scattered protons
 - → Energy and direction of neutron

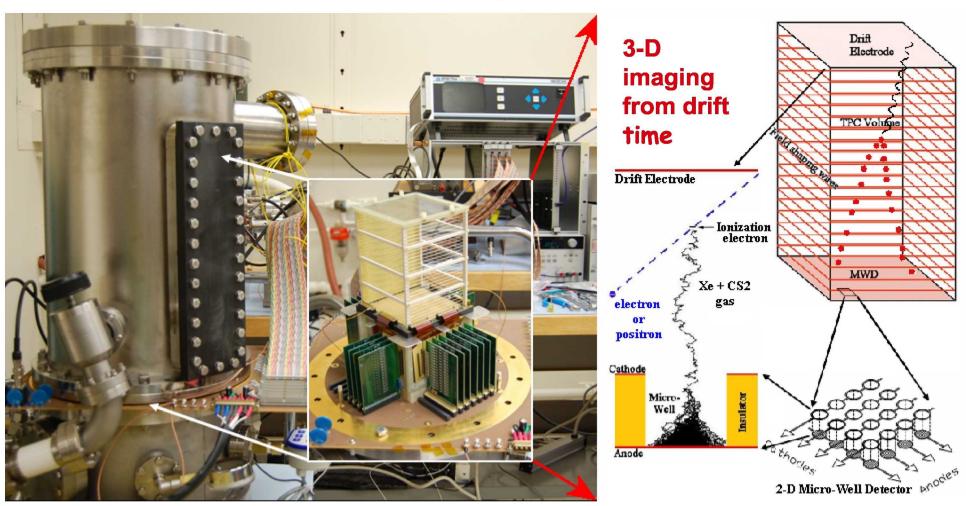

$$\cos \varphi_{2} = \vec{P}_{p2} \cdot \vec{P}_{n'}$$

$$E_{n'} = E_{p2}/\cos^{2}\varphi_{2}$$

$$\vec{P}_{n'} = \sqrt{2m_{n}E_{n'}} (\vec{L}_{2} - \vec{L}_{1})$$

$$\vec{P}_{n} = \vec{P}_{p1} + \vec{P}_{n'}$$

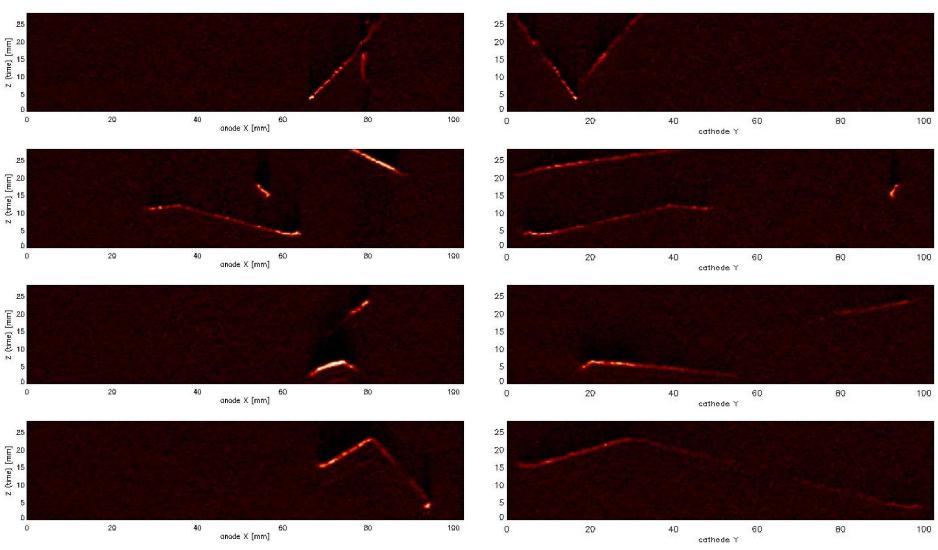
$$E_{n} = (\vec{P}_{n} \cdot \vec{P}_{n})/2m_{n}$$



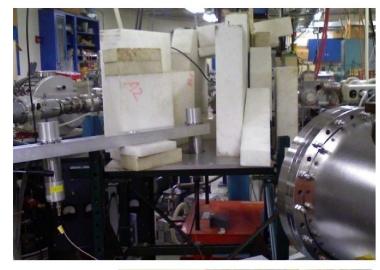
*Increase in sensitivity, background reduction, and angular resolution, omnidirectional

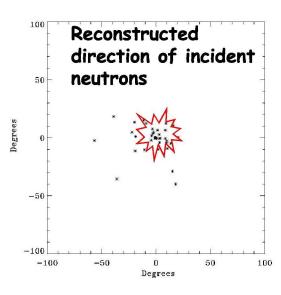
NIC/3-DTI Theory of Operation

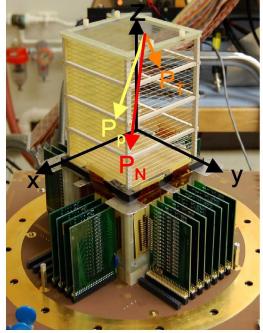
- **Ionization chamber**: Large-volume time projection chamber (TPC)
- Proportional counter: 2-D gas micro-well detector (MWD) readout Low density, homogenous medium (low energy particle tracking)


 - 100 % active detector volume (no scattering in passive material)

IEEE 2009 Orlando


Successful NIC Demonstration





Neutron Imaging

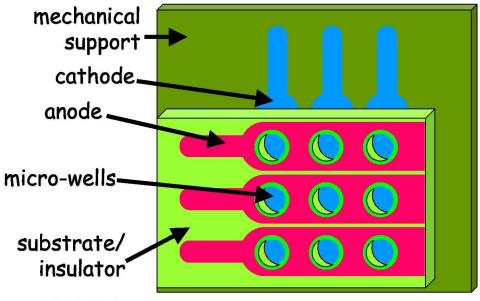
- Imaged 1 MeV neutrons at the NSWC PIAF
- Neutron momentum reconstructed from p,T fragments
- Angular resolution θ_{68} =~8 deg
- ➤ We are looking at alternatives to ³He including H₂ & Methanebased NIC

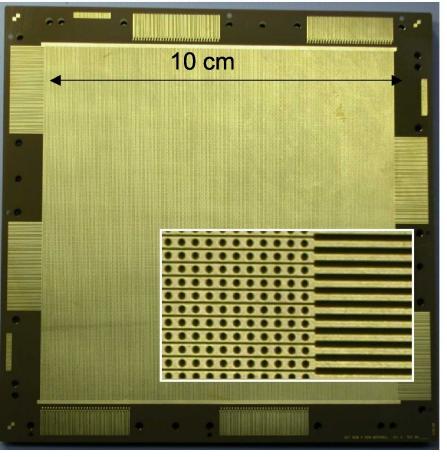
MWD Construction

MWDs are "double sided flex circuit boards" with orthogonal (2-D) traces on top & bottom.

Micro-wells are holes, machined through substrate

concentric with openings in cathodes.


Well Pitch: 400µm (16 mil)


Well Diam: 200µm (8 mil)

Well Depth: 200µm (8 mil)

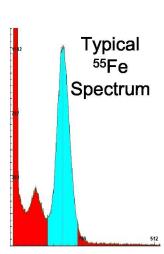
Cathode Gap: 50µm (2 mil)

goal 12µm (0.5 mil)

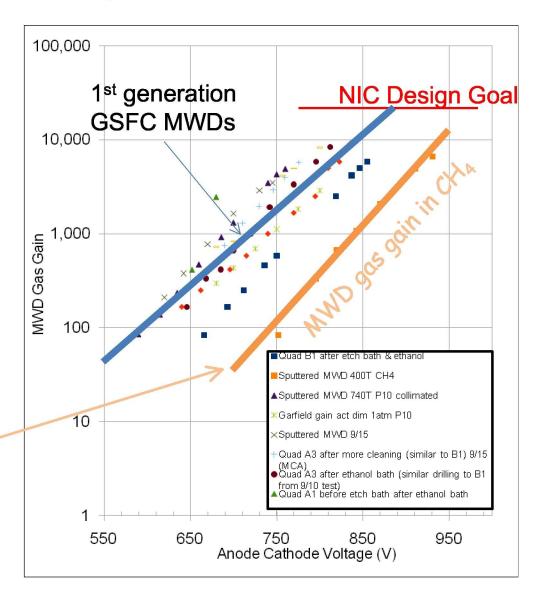
MWD Fabrication

- Laser micro-machining facility is fully functional
- Machining sections of 10×10 cm² substrate area to optimize technique
 - Many aspects of fabrication effect MWD performance (gas gain)
 - · Laser ablation technique
 - Surface cleaning
 - Well diameter wrt to cathode hole diameter
 - · Well aspect ratio
- 1 Day turn-around
 - Rapid testing of techniques

GSFC MWD Performance

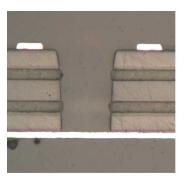

· 2nd gen GSFC MWDs

· Gain measurement

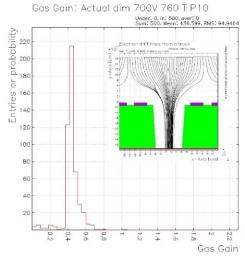

- Collimated ⁵⁵Fe source, P-10

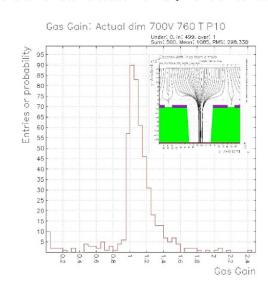
at 1 atm

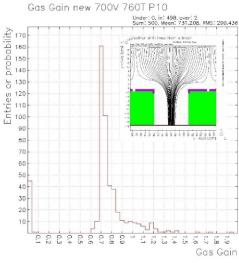
 Max gain limited by breakdown


Works with CH₄
 V_{AC} higher
 CH₄+CS₂ tests soon

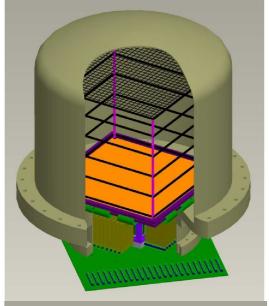
IEEE 2009 Orlando

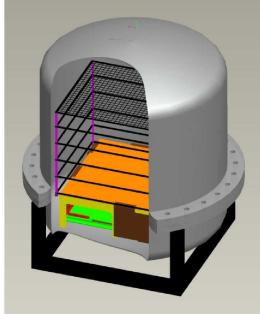

GARFIELD Simulations


- Model various gas mixtures and well geometries to optimize MWD performance and fabrication
- Results indicate strong dependence on well shape



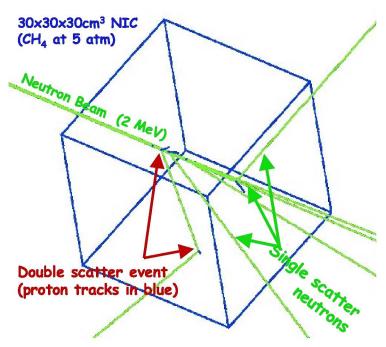
P-10 at 760 torr, V_{Bias} =700V 400V drift potential Histograms from 500 Monte-Carlo electrons drifted from a line 200 mm above the center of the well



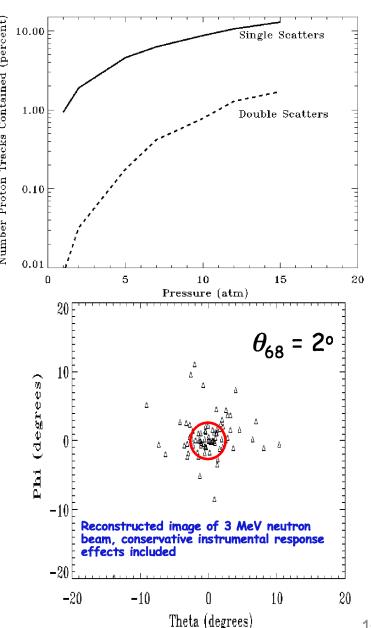


30x30 cm² NIC Development

- > Produce 30x30 cm² NIC for field testing by early 2010.
- · 30 cm MWD with 10 cm electronics
 - 1/3 resolution readout (512 channels)
 - · Gang 3 electrodes to one FEE channel
 - Snapshot and semi-streaming data mode
- 30 cm MWD with 30 cm electronics
 - 1/2 resolution readout (768 channels)
 - Every other electrode read out, limited by number of ASICs
 - Streaming data mode
- Full resolution readout (1536 channels)
 - Additional ASICs, not before Jan 2010

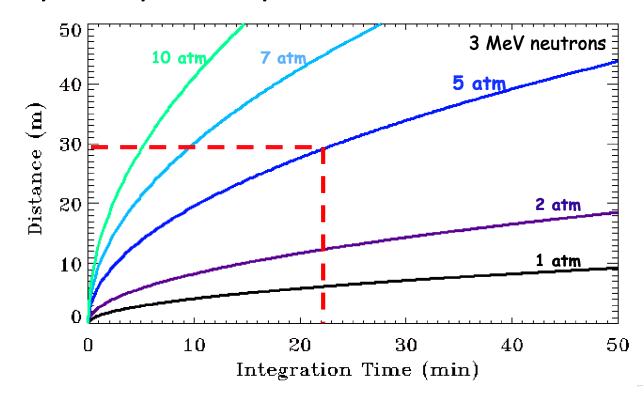


GEANT4 Simulations


- Simulate (n,p) double scatter events within NIC
 - Assume NIC is filled with CH4
 - Neutron beam:
 - Point source or uniform illumination
 - Mono-energetic or representative of a radioactive source, e.g. ²⁵²Cf
 - Track all single & double scatter events
- Generate simulated events for image reconstruction software development
- Reconstruct image plane using simulated events
 - Add instrument response

NIC Efficiency Estimate

30 cm NIC, 3 MeV neutrons


- Probability of interaction ~0.5%
- ³He at 3 atm
 - Single interaction, PSF: $\theta_{68} = \sim 5^{\circ}$
- CH₄ at 5 atm
 - Double scatter, PSF: $\theta_{68} = \sim 2^{\circ}$
- Imaging reduces contribution of the background
- Improves sensitivity

NIC Sensitivity

- Evaluate NIC sensitivity to 20 microCi ²⁵²Cf source.
- Consider Omnidirectional NIC (all four sides of square 30x30x30 cm² active volume).
 - Compute cosmic ray background intensity accounting for zenith dependence (Moser et al. 2005).
 - Assume 25 square degree resolution within field of view, resulting in ~1100 pixels over entire field of view
 - Assume NIC properly identifies every interacting neutron and choose only proton tracks that are fully contained with NIC
- Determine the integration time versus source location such that NIC identifies a source with a 1/1000 probability for false positive.

* Trade Study underway to optimize NIC Sensitivity

IEEE 2009 Orlando

NIC Field Testing

- NIC 30 cm prototype completed in early 2010
 - MWD Optimization (GARFIELD and empirical studies)
 - Gas studies for methane-based NIC
 - NIC design optimization based on GEANT4 simulations
- GSFC Field Tests
 - D-T generator
 - 10 mCi ²⁵²Cf source
- NSWC Field Tests
 - D-T generator field tests
 - NSWC/PIAF tests
- ONR funding to investigate active and passive integration of NIC on Naval platforms

18